ASIAN JOURNAL OF GEOINFORMATICS
ISSN: 1513-6728


New Publication| Asian Journal of Geoinformatics

VISUALIZATION OF PEDESTRIAN INTERACTION THROUGH ATTENTION-BASED PEDESTRIAN TRAJECTORY PREDICTION

Wen-Xin Qiu*, Takashi Fuse


Abstract

Analysis of pedestrian trajectory from observational data is an important approach to understanding microscopic pedestrian behaviors at the operation level. Based on the understanding, pedestrian simulation and trajectory prediction could facilitate pedestrian space development and pedestrian safety study. The studies can be categorized as conventional approaches and deep learning approaches. The conventional approaches model pedestrian behaviors based on known features, such as avoiding collision, and further improve the knowledge of those features. The deep learning-based approaches learn various features from data and model the pedestrian interactions through designed mechanisms rather than treat them as independent time series data. Although deep learning-based approaches achieved higher accuracies in prediction, the lack of interpretability due to its black-box nature is an obstacle to improving generalizable knowledge of pedestrian behaviors. This study aims to improve the deep learning-based pedestrian trajectory prediction method with the consideration of accuracy, computational cost, and interpretability. A spatial-temporal graph is constructed to model the coordinates and interactions of observed pedestrians. The graph attention network (GAT) is introduced into the proposed approach to obtain attention scores. GAT is effective in the number of learnable parameters, a measure of computational costs, and can handle bidirectional edges. The learned attention scores represent the degree how much a pedestrian is aware of one another, so they can be considered as an explicit quantitative representation of the interactions. With the visualization of the scores, the users, such as space planners or traffic engineers, can perceive how the deep learning model learned the interactions. Our proposed approach is validated on a benchmark dataset, ETH/UCY. Compared to the baseline models, the low computational cost is achieved owing to the efficiency of the GAT; the high accuracy is shown by evaluating average displacement error (ADE) and final displacement error (FDE). Finally, the predictions and the attention scores are visualized to provide an interpretation of pedestrian interaction learned by the deep learning model.

Keywords: Pedestrian trajectory, Deep learning, Spatial-temporal graph, Attention mechanism

Full Text:

peri hokiperihokiduta76dsiledAt-Taujih; Jurnal Bimbingan Konseling Islamabc1131 slot viralScatter Hitamslot gacor qrisslot thailandabc1131duta 76slot qris danaabc1131 slot777 lundbergdesign.comABC1131mpo slotslot gacorMPO SLOTsetiap putaran mahjong wins 3 menjadi petualangan baru saat scatter hitam mengunci peluang jepe tanpa batasketika scatter hitam tampil putaran mahjong wins 3 menjadi lebih intens dan penuh kejutan jepescatter wild mengubah setiap detik permainan menjadi peluang baru untuk hadiah besar secara cepattidak ada strategi yang lebih efektif selain mengandalkan scatter wild untuk hadiah besar di mahjong ways 2putaran panas mahjong wins 3 hadir ketika scatter hitam membawa aura keberuntungan perkalian tingkat tinggitiap putaran mahjong wins 3 jadi bernilai saat scatter hitam menghantam layar dengan perkalian tak masuk akalsaat scatter wild mengambil alih mahjong ways 2 berubah menjadi mesin cuan cepat untuk semua pemainscatter wild mahjong ways 2 menjadi kunci strategis untuk membuka jalur cuan besar dalam waktu singkatmomen putaran mahjong wins 3 menjadi luar biasa saat scatter hitam memicu ledakan cuan tanpa hentidetik detik putaran mahjong wins 3 yang menegangkan ketika scatter hitam tiba tiba mengubah segalanyarevolusi gameplay pgsoft pangkas deadspin di mode regular mahjong